A Simple Yet Complex One-parameter Family of Generalized Lorenz-like Systems

نویسندگان

  • Xiong Wang
  • Juan Chen
  • Junan Lu
  • Guanrong Chen
چکیده

This paper reports the finding of a simple one-parameter family of three-dimensional quadratic autonomous chaotic systems. By tuning the only parameter, this system can continuously generate a variety of cascading Lorenz-like attractors, which appears to be richer than the unified chaotic system that contains the Lorenz and the Chen systems as its two extremes. Although this new family of chaotic systems has very rich and complex dynamics, it has a very simple algebraic structure with only two quadratic terms (same as the Lorenz and the Chen systems) and all nonzero coefficients in the linear part being −1 except one −0.1 (thus, simpler than the Lorenz and Chen systems). Surprisingly, although this new system belongs to the family of Lorenz-type systems in some existing classifications such as the generalized Lorenz canonical form, it can generate not only Lorenz-like attractors but also Chen-like attractors. This suggests that there may exist some other unknown yet more essential algebraic characteristics for classifying general three-dimensional quadratic autonomous chaotic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving Chaos: Identifying New Attractors of the Generalised Lorenz Family

In a recent paper, we presented an intelligent evolutionary search technique through genetic programming (GP) for finding new analytical expressions of nonlinear dynamical systems, similar to the classical Lorenz attractor’s which also exhibit chaotic behaviour in the phase space. In this paper, we extend our previous finding to explore yet another gallery of new chaotic attractors which are de...

متن کامل

Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems

In this paper, generalized synchronization (GS) is extended from real space to complex space, resulting in a new synchronization scheme, complex generalized synchronization (CGS). Based on Lyapunov stability theory, an adaptive controller and parameter update laws are designed to realize CGS and parameter identification of two nonidentical chaotic (hyperchaotic) complex systems with respect to ...

متن کامل

A Common Phenomenon in Chaotic Systems Linked by Time Delay

In this paper, we report a common phenomenon observed in chaotic systems linked by time delay. Recently, the Lorenz chaotic system has been extended to the family of Lorenz systems which includes the Chen and Lü systems. These three chaotic systems, corresponding to different sets of system parameter values, are topologically different. With the aid of numerical simulations, we have surprisingl...

متن کامل

a Simplified Model of Distributed Parameter Systems

A generalized simplified model for describing the dynamic behavior of distributed parameter systems is proposed. The various specific characteristics of gain and phase angle of distributed parameter systems are investigated from frequency response formulation and complex plane representation of the proposed simplified model. The complex plane investigation renders some important inequality cons...

متن کامل

Methods for Parameter Estimation of the Lorenz Functional Forms and Compare Them Based on Household Expenses Data

In the modern society and specially in our country discussion of poverty, wealth and social justice are the most important arguments of public and private circles. The most important graphical tools which are used to describe the quantity of centralization like wealth in a society is Lorenz curve. In these situations, most of econometricians measure the economic inequalities. In the discrete ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012